
I 

NASA 
Tech n ica I 
Paper 
2454 
Q- I 

1 July 1985 

NASA 

~ Intersection of 
Three-Dimensional 
Geometric Surfaces 

Vicki K. Crisp, TECHNICAL REPORTS 
John J. Rehder, FILE COPY 
and James L. Schwing 

h p e r t y  of U. S. Air Fom 
AEM: LIBRARY 7 

f40600-31 -C-n004 



NASA 
Tech n i ca I 
Paper 

1985 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Branch 

Intersection of 
Three-Dimensional 
Geometric Surfaces 

Vicki K. Crisp 
Kentron International, Inc. 
Hampton, Virginia 

John J. Rehder 
Langley Research Center 
Hampton, Virginia 

James L. Schwing 
Old Dominion University 
Norfolk, Virginia 



Summary 
Calculating the line of intersection between two three-dimensional objects and using the information to 

generate a third object is a key element in a geometry development system. Techniques are presented for 
the generation of three-dimensional objects, the calculation of a line of intersection between two objects, 
and the construction of a resultant third object. The objects are closed surfaces consisting of adjacent 
bicubic parametric patches using Bdzier basis functions. 

The intersection determination involves subdividing the patches that make up the objects until they 
are approximately planar and then calculating the intersection between planes. The resulting straight- 
line segments are connected to form the curve of intersection. The polygons in the neighborhood of the 
intersection are reconstructed and put back into the BCzier representation. A third object can be generated 
using various combinations of the original two. Several examples are presented. 

Special cases and problems were encountered, and the method for handling them is discussed. The 
special cases and problems included intersection of patch edges, gaps between adjacent patches because 
of unequal subdivision, holes, or islands within patches, and computer round-off error. 

Introduction 
In recent years, considerable growth has occurred in the application of computer-aided-design (CAD) 

systems. These systems are being used in the design process from the conceptual and preliminary levels 
through the final manufacturing stages. A key element in all CAD systems is the description of the 
geometry of the object being designed. A three-dimensional (3-D) geometrical description can be used to 
determine weights and assess clearances as well as to provide the designer with the essential visualization 
of the object being designed. For aerospace vehicles, the geometry is applied to aerodynamic and heating 
prediction methods to initially design the shape, structural concept, and thermal protection system. 

At the Langley Research Center, CAD techniques have been applied to the conceptual and preliminary 
design of advanced space transportation concepts. The Aerospace Vehicle Interactive Design (AVID) 
system has been developed for that purpose (ref. 1). An important part of AVID is the geometry 
development system, a full 3-D modeller, based on bicubic Bdzier patches, that allows a designer to 
describe complex vehicle shapes in a natural way. The designer is able to create 3-D objects by modifying 
primitive objects, by extending two-dimensional (2-D) shapes by revolving or lofting, and by merging two 
objects to form one. An example of object merging is the joining of a wing and a fuselage to form one 
continuous object by eliminating the portions of each object that lie within the other. 

Forming a composite object by merging two objects has always been a problem for geometry modellers. 
Two distinct problems must be solved. First, the curve of intersection between the objects must 
be determined. Then, using the intersection information, a resultant object must be formed that is 
mathematically consistent with and geometrically faithful to the original objects. 

Recent efforts to calculate the curve of intersection between curved surfaces have used the technique 
of subdividing the surfaces into planar polygons and determining the intersection between planes. The 
intersection curve can be generated by connecting the line segments produced by the planar intersections. 
In particular, the current effort is based principally on previous work by Carlson (ref. 2) .  Newer techniques 
for intersection tests and calculations were applied within Carlson’s overall algorithm; the most significant 
technique was a subdivision method from Lane and Riesenfeld (ref. 3). 

The most difficult part of merging objects is the construction of the resultant object once the intersection 
has been identified. So far, no method has been found that retains the original surface properties such 
as curvature. The current study presents a technique for converting the irregularly shaped polygons 
generated by the intersection back into the Bdzier representation. Although the original curvature of the 
surfaces is still lost in the neighborhood of the intersection, the resultant objects created by combining 
the objects in different ways are faithful enough to be used in a preliminary design system. 

This paper describes a technique for merging objects. The mathematical basis for defining the objects as 
closed surfaces consisting of adjacent bicubic patches is presented. In particular, a method for generating 
bodies of revolution is described. Techniques for determining the space curve of intersection between the 



. 

X 

Figure 1. Coordinate system and patch representation 

two objects and the portion of each object which lies inside the other are presented. Finally, the method of 
developing the resultant object for the desired geometric combination is described. Computer algorithms 
and programs for constructing, merging, and displaying 3-D objects are discussed. 

3-D Object Generation 

Mathematical Basis 

The coordinate system and the patch representation for this study are illustrated in figure 1. A right- 
handed Cartesian coordinate system (2, y, 2) was used. The surfaces under consideration are comprised 
of adjacent four-sided bicubic patches. The surface equation for the patch is a cubic polynomial in two 
parametric variables ( s  and t )  that range in value from 0 to 1. The four sides of the patch are cubic space 
curves formed when s = 0, s = 1, t = 0, and t = 1. 

The form of z ( s , t )  is as follows (ref. 4): 

3 2 3 2 + a31st + a32st  + a33st  + ~ 3 4 ~  + ~ 4 l t  + ~ 4 2 t  + ~ 4 3 t  + a44 

This equation is more conveniently written in matrix notation as 

T z ( s , t )  = SC,T 

3 2  t where S = [s3 s2 s 11, T = [ t  
equations for y(s, t )  and z ( s ,  t ) .  

t 11, and C, is the polynomial-coefficient matrix. There are similar 

2 



\Convex h u l l  

p1 

I 
\ 
\ I 

I \ 
\ 
\ f 
\ \ ’  

\ f  

% 3 

Figure 2. Examples of 2-D Bkzier cubic curves. 

There are several possible mathematical bases for the coefficient matrix. The particular form of cubic 
equation used in the present work is the Bkzier polynomial. (See ref. 5.) In two dimensions, a Bbzier curve 
is defined by four control points. (See fig. 2.) The two endpoints and the tangent vectors at the endpoints 
are specified. The curve can be modified by direct manipulation of the four points. These points form a 
polygon, called the convex hull, which completely bounds the curve. The parametric cubic equation for 
the curve is ~ ( t )  = TMbPT, where Px is a vector containing the z values of the control points and 

-1 3 -3 1 
3 - 6  3 0  

Multiplying the matrices gives 

z ( t )  = (1 - t)3Pz1 + 3 t ( t  - 1)2Pz2 + 3t2(1 - t)Pzg + t3Pz4 

There are similar equations for y and z .  
In three dimensions, a surface patch is defined by 16 control points. (See fig. 3.) The four points 

along each edge of the patch describe BCzier curves; two points define the endpoints, and the other two 
determine the tangents of the curves at  the endpoints. The equation for the bicubic BCzier patch is 

where Pz is a 4 x 4 matrix of the z-components of the control points. There are similar equations for 
y(s, t )  and z ( s ,  t ) .  

The main advantages of using the BCzier polynomials as basis functions are that the shape of the patch 
can be easily changed by manipulating the control points and that the polyhedron formed by the control 

3 



'4 1 

p44 

Figure 3. Bicubic Bkzier patch with control points 

points is a convex hull which bounds the surface. The convex-hull property is useful in testing a patch for 
intersection with another patch or with a clipping plane. The convex hull is tested first, and only when 
it intersects is it necessary to test the actual patch. 

Shape Generation 

Since the same mathematical basis is used independently of the shape of the objects, the intersection 
algorithni can he drvelopetl and t,ested using simple shapes, such as cubes and spheres, and then applied 
to arbitrary shapes. The only requirement is that the objects be closed surfaces made up of adjoining 

As illustrated in figure 4, a cube is defined by six patches, one for each face of the cube. Since the 
faces are planar, the 16 control points for each face lie in the same plane. The points that define the 
sides of each patch may lie anywhere on the edges of the cube, with the endpoints on the corners, and 
the interior points of the patch may lie anywhere on the face. For convenience, they were assumed to be 
evenly spaced in this case. 

A sphere consists of eight, patches, each of which is constructed by rotating a 2-D B@zier curve 
approximation of a quarter-circle through an arc of 90O. Although an exact reproduction of a circle 
or a sphere is not possible with Bkzier polynomials, the following technique produces an accurate 
approximation. The quarter-circle is defined by four B4zier points as shown in figure 5 for a unit circle. 
One of the defining parametric equations becomes 

patches. 

At the midpoint, of a quarter-circle, t = 1/2 and x = J 2 / 2 .  Substituting these values into the above 
equation and solving yields 

= 0.552285 
4 J z - 4  

a=--- 
3 

For circles with a radius other than 1 ,  the distance of the slope control points from the axes is cr times 
t h c .  r. d( 1' 111s. 

Tho rcwilt of rotating thc circular arc through goo to  create a spherical segment is shown in figure 6. 
The cont,rol points for the edge curves ( P l l ,  P12, P13, PI4; P14, P24, P34, P44; P41, P42, P43, P44) follow 

4 



Figure 4. Patch representation of a cube 

t z  

X 

Figure 5. BCzier representation of a quarter-circle. 

from the preceding paragraph, as they are 2-D circles. The locations P22, P32, P23, and P33 are easily 
derived from the edge definitions by maintaining circular cross sections taken parallel to the Z-y plane. 
For example, control points P22 and P32 are defined as if (P12, P22, P32, P42) corresponds to a circle of 
radius a;  thus, the distance from P42 to P32 is a times the radius or a2.  The entire patch is rotated about 
the axes to generate the seven additional patches required to describe a complete sphere. Care must be 
taken in the ordering of the control points. The points in figure 6 are ordered in a way that ensures that 
the calculated surface normal always points to the outside of the closed surface of revolution. 

5 



‘11’ 

t I /  I r 7 3  

-/ ‘24 
X p-. 

Figure 6. RCzicr rcprrsrntatiori o f  a 1/8 sphere. 

The same procedure can be used to generate a body of revolution from any 2-D Bkzier curve. Figure 7 
shows a bell-shaped objcct, generated from a BCzier curve defined in the 2-2 plane and rotated through 
90’. As with th(. sphcre, the surface segment can be rotated about the axes to complete the entire body 
of rcw)lution. The endpoints of t,he original planar curve are placed on the axes to ensure that a closed 
surface is formed. 

Object Manipulation and Drawing 

Computer programs were written for the interactive generation, manipulation, and viewing of the 
objects used in the intersection determination. The programs were written in FORTRAN 77 on a 
Prime 850 minicomputer. With these programs and a graphics terminal, the user can construct two 3-D 
objects, each of which can be either a cube or a body of revolution. For describing a body of revolution, 
the program places the y and z axes on the screen and, using a cross-hair cursor, the user inputs the four 
Bkzier control points of the originating curve. These points arc thtm individually moved, and the curve is 
redrawn until the desired curve is produced. A unit cube as described previously and shown in figure 4 is 
provided by the program when selected by the user. 

Once two objects are created, they can be individually moved, scaled, or rotated by the user until they 
are in the desired position and orientation with respect to one another. The objects are displayed on the 
terminal screen by drawing the patches as a series of curves defined by constant s and constant t (ref. 4).  
The result is a grid pattern on the surface of each object (fig. 8) for a cube and a body of revolution. 

Object Intersection 

General Algorithm 

W h c ~  portions of two 3-D objects occupy thc Same spacc, a common line of intersection is created 
011 the surfaces, and sorri(’ of  the closed surface of each object, is contiiinod within the other object. An 
algorif.lirri is used t>o drt)cmninc tho line of iritersectioIi (ref. 2) .  Each patch of one object is compared with 
( w r y  patjch of thc other object, arid tlhe intersection between the two patches is calculated if it exists. 

6 



J 
X 

Figure 7. Body of revolution generated from an arbitrary Bkzier curve. 

Figure 8. Sample display of Bkzier surfaces. 

The complete curve of intersection consists of the line segments determined from all the patch-to-patch 
intersections. 

There is no known way to analytically determine the curve of intersection between two bicubic patches. 
Therefore, the patches are broken down, or subdivided, into smaller patches that are planar within some 
tolerance. This subdivision results in the simpler problem of calculating the straight line of intersection 
between planar polygons. Once the intersection is found, the orientation is determined; that is, it is 
determined which portion of the patch is inside the other object. Likewise, if no intersection is found, the 

7 



Q1 

Figure 9. Subdivision o f  a 136zier curve 

orientation of the entire patch with respect to the other object is calculated. The details of each part of 
the intersection algorithm, including the handling of special cases, are presented in the following section. 
Each of the parts is described in words and by an algorithmic pseudo-code description. 

Patch Subdivision 

The subdivision process consists of dividing the patches of both objects until they are approximately 
planar or until it IS detcrmined that they cannot possibly be involved in the intersection. A patch that 
can be elirninatcd from the intcrscction at  this stage is termed separable. A fast method of subdividing 
bicubic patches (rrf. 3) is applicd t o  thc problem. An example of using this algorithm to subdivide a 2-D 
B6zic.r ciirvc is shown in figiirc 9. The original curve defined by the control points Pz is divided at  the 
point whcw t h c .  valuc o f  thc. parairietric variable t is l / 2 .  The control points of the two smaller curves, 
Q, for I = 0 to  I = 1/2 and R, for I = 1/2 to t = 1, are easily computed as follows: 

Q i  =Pi  
Q2 = (Pi + p2)/2 
Q 3  = (Q2 + W)/2 
R4 = P4 
R3 = (P3 + P4)/2 
R 2  = (R3 + W)/2 

Ri = Q4 = (623 + R 2 ) / 2  

(where W = (P2 + P3)/2) 

The method can be extended to surfaces in three tfimensions where the subdivision of the boundary 
curves is similar to the 2-D case. As a result, thc bicubic patch is divided into four adjoining patches 
as shown in figure 10. These four patches together reproduce the original single patch exactly, and can 
replace it in t,hc analysis. Each of the new patches can now be tested for planarity or separability and can 
tw fiirt,her subdivided if necessary. If a patch is determined to be planar or scparablc, this information is 
placcd in tjhcx data structure, the details of which arc discussed subsequently. The subdivision proceeds 
rrcursivdy until the fat.(. of all the pat,ches in both objec is determined, at which time the objects consist 
of  a rnixt,urc o f  hicubic patches and planar polygons in th r  ric.ighborlioo(~ of t,hc linc of intersection. The 
sut)clivisioii can tw dcscrit)cd in algoritdhrnic form as follows: 

I’roc,cdiirc.  siil)divisioii 
I3vgiri 

1:or ( L i i ( . f l  ot) j ( *c t  
For c a c h  p a t c h  iri t,hc ot).ject 

8 



5 = 112, t = 0 

Figure 10. Subdivision of a BCzier patch. 

Procedure sdtest 
Begin 

Is the patch separable from the other object? 
Case yes: 

Set orientation to outside 
Enter patch into data structure 
Return 

Is the patch nearly planar? 
Case no: 

Case yes: 
Set intersection involvement flag 
Enter patch into data structure 
Return 

Subdivide patch 
For each subpatch 

Case no: 

Recursively call sdtest 
End sdtest 

End subdivision 

At this point, the separability determination is very simple. The control points of the patch in question 
are compared with the bounding box formed from the maximum and minimum z, y, and z values of the 
other object. If all the control points are larger than the maximum value or smaller than the minimum 
value of any coordinate, the patch is completely outside the other object, and no intersection is possible. 
It can then be flagged as not being in the intersection and as having an outside orientation. 

The planarity test is more complicated. The patch is first assumed to be planar. The equation of the 
plane is Ax + By + C z  + D = 0, where the first three coefficients are determined from the cross product 
of the two diagonal vectors connecting the opposite corner points of the patch and where D is calculated 
by substituting one of the corner points into the equation. The distance of each control point from the 
plane is then calculated, and the distance of the point farthest from the plane on one side is added to the 
distance of the point farthest from the plane on the other side. This addition yields a value that can be 
thought of as the “thickness” of the patch. If the thickness is less than the desired tolerance, the patch 
is assumed to be a planar quadrilateral for the remainder of the analysis. The patch is flagged as being 

9 



a possible contributor to the intersection, and the points defining the patch are entered into the data 
structure. 

Data Structure 

During the subdivision process, the patches are divided into four subpatches; therefore, a quadtree was 
chosen as the data structure which would best represent the data logically (ref. 2).  A quadtree is a data 
tree in which each node has four children. When a patch is determined to be separable or planar and is 
no longer subdivided, the data for that patch are put into a leaf node of the tree. The structure of the 
data record is discussed subsequently. 

Figure 11 illustrates how the quadtree is recursively built up during the subdivision of one patch. The 
original patch is shown with a curve of intersection with another patch. Although the line of intersection 
is generally not known a priori, it is assumed to be known for the purpose of the illustration. As the 
subdivision proceeds, the tree grows down and to the left until a patch does not require subdivision. A 
leaf node is generated there, and the process goes back up the tree and restarts at the next available 
branch. In the  figure, the patches and their corresponding leaf nodes are numbered in the order they are 
generated. The leaf nodes designated by the open boxes represent patches that are separable and not 
involved in the intersection, whereas the closed boxes represent leaf nodes that are planar and possibly 
involved in the intersection. 

The structure of the records at each leaf node that is involved in the intersection follows the form of 
the data generated during the intersection calculation. When a planar patch from one object intersects 
a patch from the other object, a line of intersection is formed in one of three ways. (See fig. 12.)  Two 
intersection points which define the line segment are found and placed into a data list. More than two 
points can be found if two edges int,crsect each other, and this is handled as a special case. The two points 
which define an intersection line segment are referred to as partners. The intersection points produced by 
the edges of a patch are refcrrod to as exterior intersection points for that patch. Points within a patch 
generated by the edges of other patches are interior intersection points. Intersection records for the two 
patches arc constructed which rcfer to the intersection points. Since any given patch may intersect with 
more than onr patch from t,he other object, several of these intersection records are produced and then 
connected by  a doubly linked list structure. 

In the FORTRAN program, the patch information is kept in a 3-D array, rnodeleaf(i,j,k), with structure 
as follows: 

First dimension(i): 
1. . .48 Coordinates of 16 control points of patc,h (XI, y 1 , z l ,  
49 ~ Orientation indicator of patch (1 = “Outside”, -1 = “Inside”) 
50 

Second diniension(j): 
Patch (node) number 

Third dinirnsion( k):  
Object, number 

Pointer to first intersection record for this patch (if null, patch is not involved in intersection) 

Leaf nodes involved in the intersection have information kept in an intersection record in the form of 
a companion 9 x 1 x 1 array, intsnode(i,j,k), with structure as follows: 

First dimension(i): 
1 
2 
3 
4 

Pointer to prcvious intersection record for specific patch (null if this is the first) 
Pointer to an intersection point 
Point,c%r to an intorsection point 
Ii i t .cyyr valucl (0 . . . 3 )  dtyoiidcnt, on point iritcnc%ction irivolvernerit, 

1 
2 
3 
0 

ICxt,c.rior intcrscxct.ion point givcw by the poi1itc.r in index 2.  (See fig. 12(b) .) 
I:st.c.rior iiit,cmctct.ion point, given by the poiritrr in index 3. (Sre fig. 12(b).) 
14Cxtc.rior iiitc*rsc,c-t.iori poiiit,s given by point,rrs in indices 2 and 3 .  (Sce fig. 12(a).) 
Intcrior iritc~rsoct.ior1 poi1it.s given by pointers in indices 2 and 3. (See fig. 12(c).) 

10 



0 Separable l e a f  node 
Planar  l e a f  node 

/IC1 
C'"" . . I d P  

(a) Recursive building of quadtree during subdivision. 

S e p a r a b l e  l e a f  node 
P l a n a r  l e a f  node 

1 2 3 4 5 7 8 9 IO 11 12 1 3  16 1 7  I d  19 20 21 22 2 3  26 7 7  23 2 1  

(b) Completed quadtree. 

Figure 11. Example of quadtree da ta  structure. 

11 



(a) I h t h  cntipoints from patch1; two 
oxt or ior  points f o r  patch 1 .  

(b)  One endpoint from each patch; one 
exterior and one interior point 
for  each patch. 

(c) Both cmdpoints from patct12; two 
interior points for patch 1 .  

Figure 12. Planar intersection possibilities. 

5 -Patch edge number corresponding to point located through index 2 (0 if index 4 is 0 or 2)  
6 -Patch edge number corresponding to point located through index 3 (0 if index 4 is 0 or 1) 
7  orientation corresponding to point located through index 2 
8   orientation corresponding to point located through index 3 
9 

Second dimerision(j): 
Intersection rrcord poir1t.c.r 

Third dimension( k) :  
Objcc t nurnbcr 

Pointer to next intersection record for specific patch (null if this is thc last) 

Figurct 13 displays the nianncir in which the preceding data structures interact. Since leaf node 1 is 
clcsignatrd scparable, the only information needed about this patch is the 16 control-point values and 
the orientation of t,hc patch with respect to the other object. No intersection information exists; thus, 
that pointer is null. Leaf node 3, however, is not separable. The 16 control-point values of this patch 
must also be kept, but the orientation of the patch cannot be determined at that time. A pointer to the 
intersection data structure is set upon intersection calculation. This pointer refers to the first block of 
intersection information about the patch. If more than one block of information exists, as in figure 13, 
the data structures are linked together through forward and backward pointers. For example, interscction 
record 2 is t,he first of two blocks of intersection information for the leaf node. Therefore, the backward 
pointer is set to null, and the forward pointer is set to intersection record 3. Intersection record 3 in 
turn has a backward pointer set to intersection record 2 and a forward pointcr set to null, since no other 
intersection information about the leaf node exists. Pointers to intersection points involved with the 
patch are also kept in the intersection data structure. These pointers are directed to a two-dimensional 
array, pointints(i,j), that contains the coordinates of the intersection points. As shown in figure 13, the 
pointers correspond to the column index in the array. For example, intersection point 3 has 2 coordinate 
in pointdints(l,3), y coordinate in pointints(2,3), and z coordinate in pointints(3,3). 

Intersection Algorithm 

The general intersection algorithm described previously is preserited in more detail below and is 
followcd by t ,hci intcwcction possibilities algorithm. The intersection possibilities procedure determines 
thc irit,c.rsc~c.t,ion, if any, bctween two given planar patches. A series of t,cst,s are performed to immediately 
cliniiIiiit,(> nodrs from thci comparison process if an intersection cannot exist. To reduce the amount of 

tlic int,orsc.ct,iori algoritjhms. The intersection algorithms are as follows: 
I coItiI)iit,;it .iori, t,lic. t,c\st,s itr(’ pcrfornicd in order of increasirlg complexity. Explanations of these tests follow 

12 



Separable l e a f  node 
Planar leaf  node 

. . .  YP3 I YP5 
L P 3  zP4 zP5  

. . .  

. . .  p o i n t i n t s ( 1  . . .  3 ,  3 )  . - .  

FIgErc 13. Data structure interaction 

Procedure int-test 
Begin 1 

For each leaf node of object one 
Begin 2 

Was this object one node declared separable by the subdivision testing? 
Case yes: 

Case no: 
Continue with next leaf node 

For each leaf node of object two 
Begin 3 

Was this object two node declared separable by the subdivision testing? 
Case yes: 

Case no: 
Continue with next leaf node 

Evaluate intersection possibilities between the two nodes (procedure i-test) 
End 3 

Is this object one node involved in the intersection? 
Case yes: 

Case no: 
Continue with next leaf node 

Reset orientation indicator (evaluate mid-distance test, if orientation indicator is less than 0, 
Indicator = -1, otherwise Indicator = 1) 

End 2 

13 



For each leaf node of object two 
Begin 4 

Is this object two node involved in the intersection? 
Case yes: 

Case no: 
Continue with next leaf node 

Set orientation indicator (evaluate mid-distance test) 
End 4 

End 1 

Procedure i_test(patchl,patch2) 
Begin 1 

Calculate orientation of both patchl and patch2 in case no intersection points between the two patches 

Are the bounding boxes separahle (box test)’.’ 
arc found 

Case yes: 

Case no: 
Return (no intersection) 

Are the patches parallel to one another (parallel plane test)? 
Case yes: 

<‘ ,ase no: 
Return (no intersection) 

Does patch2 cross the bounding planes of patchl? 
Case 110: 

(hsc ycs: 
Return (no intersection) 

Evaluatc the patch edge test for patchl (procedure edge- test) 
Evaluatr the pat,ch edge test for patch2 (procedure edge-test) 
Were any int,ersection points found by either patch edge test? 

Case no: 

Case yes: 
Return (no intersection) 

Was only one intersection point found? 
Case yes: 

Eliminate the point from consideration as if no intersection had occurred 
Return 

Are the two intersection poirlts the sanic’ point ( ix . ,  does an edge from patch1 
Case no: 

intersect an edge from patch2):’ 
Case yes: 

Eliminate both points from consideration as if no intersection had occurred 
Return 

Cont iriue 
Case no: 

End 1 

The box test, represents patchl and patch:! as 3-D bounding boxes (minimurn arid maximum coor- 
diriatcs) in thc. sitnic nianncr as during the subdivision. If the boxes intersect, the patches are not 
scyarablc. 

Thc. oricwt,at,ion of a patch is calculated by the middistance test. An important factor in determining 
t,hc final orivrit at ion of patchl is to find the patch2 that lies closest to it. (See fig. 14.) This is done by 
calculathg thc distance between thc midpoints of patch1 and each of the patches in the second object 



Figure 14. Orientation of a patch not separable and not in intersection 

and by updating the orientation indicator as the distance decreases. The midpoint is computed as follows: 

" = ("control-ptl + "controlLpt4 -k "controlLptl6 "~ontrolLptl3)/~ 

Y = (Ycontrol-ptl $- YcontrolLpt4 + ~controlLptl6 Y~ontrolLptl3)/~ 

* = (zcontrol-ptl + zcontrol-pt4 + ZcontrolLpt16 4- zcontrolLpt13)/4 
The distance is then calculated by 

where ( " ~ , Y ~ , Z I )  and ( x 2 , ~ 2 , 2 2 )  are the midpoints of patchl and patch2, respectively. If d is greater 
than the absolute value of the previously determined orientation distance, no update of the orientation 
indicator is needed. Otherwise, the midpoint of patchl is substituted into the planar equation for 
patch2 to determine on which side of patch2 the point is located. The equation then becomes 
E = As1 + By1 + Czl - D ,  where A, B ,  C, and D are the planar coefficients of patch2. Patch1 is 
inside the other object if E is negative. It is outside the object if E is positive. Finally, the orientation 
indicator is updated by multiplying d by the sign of E. For example, in figure 14, the distances between 
patchl and several patches in object2 are indicated by dashed lines. In this case, patchl is determined to 
be outside of object2. 

The parallel-plane test is a simple test to determine if patchl and patch2 are parallel. If the planar 
coefficients of the two patches are multiples of one another within a tolerance, the two patches are parallel 
and are defined as separable. 

The bounding-plane test is a separability test discussed by Carlson (ref. 2). It is similar to the patch 
thickness calculation that was used in the subdivision process in that the control points farthest away 
from each side of the planar approximation of the patch are used. Two planes are created, one passing 
through each of these two control points parallel to the planar approximation of patchl. (See fig. 15.) If 
any of the control points from patch2 lie between the two planes, the patches are not separable. 

The patch edge test determines which edges, if any, of patchl intersect patch2. The edges are defined 
as the following lines: 

15 



Figure 15. Bounding-plane separability test 

e l :  controlLpt1 to  controlLpt4 
e2: controlLpt4 to controlLptl6 
e3: controlLptl6 to controlLpt13 
e4: controlLptl3 to control-ptl 

The endpoints of the edges are substituted into the planar equation for the other patch. If the results 
have different signs, the edge intersects the plane. The signs of the results also give the orientation of the 
edge, that is, whcther it, is going int,o or coming out of the other object. If the result is negative from the 
first end point and positive from t,he second, the edge is coming out of the other object. If the result is 
positive. from tho first end point, antl negative from the second, the edge is going into the other object. 
(Sce fig. 16.) Thc, twt is described in algorithmic form as follows: 

I’roccdurr cdgc~ t cst (patc111,patc112) 
Begin 1 

For each edge. of  patch1 
Begin 2 

Evaluate planar equation of patch2 at  the endpoints of the edge (El = Ax1 + By1 + Czl - D, 
E2 = Ax2 + By2 + C Z ~  - D, where ( X I ,  y1, z1) antl (x2, y 2 , z 2 )  are the edge endpoints and A ,  B, 
C, and D are the planar coefficients of patch2) 

Does either endpoint lie on patch2 (is El or E2 = O)? 
Case yes: 

Casc 110: 

No intersection (if an edge endpoint lies on patxh2, it, cannot pass t,lirough patch2) 

Docs the entire edge lie on one side of the plancb (is the sign of E1 rqrial t,o the sign of E2):) 
Case yes: 

Case no: 
No intersection 

Evaluate intersection-point calculation and containment (procedure in-point) , the sign of 
El is used as an orientation indicator if an intersection point, is determined 

End 2 
End 1 

Thc. final proc(diire is to calculate and evaluate the intersection point, l)cd,wwn an edge from patch 1 
and t,hc p h a r  rcyxcmtat,ion of pat,ch2. The comput(x~ inters( ion point, is kept only if it lies within 
t.hc polygond t)oiiii(Iari(~s of pat,c,h2. However, only two (]istiIlct, intersection point,s can  exist between two 
plariar pat.chcs. Figrlrc. 17 illustratw scworal features of the iIltcrsection-point calculation; PI 1 is a patch 

16 



\ cp 1 \ 

Coming o u t  

Going i n  

Figure 16. Patch edge test. 

from object one, and P21 and P22 are from object two. When P11 is compared with P21, the two points 
defining the intersection line are found. The intersection of the third edge (e3) of P11 with P21 produces 
11, and the intersection of the third edge of P21 with P11 produces 12 .  These two points are partners 
and are saved in the intersection-point list. As shown by comparing P11 with P22, the first edge of P22 
generates 13 when it passes through Pll. The first edge of P11 and the third edge of P22  intersect and 
produce two points. Since they are duplicates, one is discarded, and one is labeled 14 and put into the 
list as a partner of 13. Since P21 and P22 are adjacent, 1 2  and 13 coincide. This information is used in a 
point-ordering scheme that connects the individual line segments to form a continuous intersection curve. 

The procedure is more complicated than described. More potential intersection points are calculated 
than are shown in figure 17. For instance, the first edge of P21 intersects the plane that contains Pll. This 
point of intersection is calculated, but is discarded because it falls outside the boundaries of Pll. Many 
points are calculated and discarded for this reason. The subsequent algorithms in this section explain the 
procedure used in more detail. The first of these algorithms is as follows: 

Procedure int-point (edge_no,patchl,orienl,patch2) 
Begin 1 

Calculate the intersection point of the edge from patch1 and the planar representation of patch2 
Project patch2 onto the coordinate plane which produces the largest projected area 
Does (up, vp), the projected intersection point, lie within the projected region given by procedure re- 

gion (uarray,varray ) ? 

Return (no intersection) 

Is this the first intersection point found between the two patches? 

Set pointers and other information into intersection node 

Case no: 

Case yes: 

Case yes: 

Case no: 

17 



Figurr 17. Intersection pointas and polygon reconstruction. 

Is this the second intersection point found? 
Casr yes: 

Case no: 
Input, inforrnation into intersection node 

Determine which two of the three intersection points are identical 
Input information into intersection node accordingly 

Return( intersection) 
End 1 

The procedure region used to determine whether the intersection point is within the 2-D planar polygon 
is well-known. As shown in figure 18, for each edge in the bounding polygon, a triangle is constructed 
from the endpoints of the edge and the intersection point. The angles opposite the edges, indicated by 8i 
in the figure, are calculated and added; if the result is 360°, the point is within the polygon. It is possible 
that, because of round-off error in the computer, a point inside the polygorl but close to the boundary 
may be determined to be outside. Thus, any point within a tolerance of the boundary is considered to be 
inside. The second algorithm used for explaining the intersection-point calculation is as follows: 

Procedure region (up,vp,uarray,varray) 
Begin 1 

Initialize difference-angle sum variable (DSUM) to 0 
Calculate a dirrction vector from the intersection point to  each of thr  four endpoints of the region 
For each direct,iori vector (dv) 

Begin 2 
Calculatr thc difference angle (danglc) from dvi to  its adjacent dirrct,ion vector (dv; + 1 )  

Is the at)s(dangle) = 180 within the tolerance'? 
Cast yes: 

Case no: 
Rrt,iirri (int,rrsrc.t,ion point, lies on an cdgc of the region) 

Increment dsum by dangle 

18 



Figure 18. Testing for a point inside a polygon. 

Continue with next direction vector 
End 2 

Case yes: 

Case no: 

Is the sum of the difference angles equal to 360 within the tolerance? 

Return (intersection point lies within the region) 

Does the intersection point lie outside the region but within tolerance of an edge, and is it therefore 
considered within the region? 

Return (intersection point lies within the region) 

Return (intersection point lies outside the region) 

Case yes: 

Case no: 

End 1 

Reconstruction of Polygons Involved in the Intersection 

When the intersection processing is complete, the patches that were involved have a number of 
intersection points associated with them. In general, each patch has the two points at  which its edges 
intersect the other object. Each patch may also have points interior to the patch. These points form 
interior intersection segments and are generated by patches from the other object. Several special cases 
may infrequently occur, particularly if a patch is large compared with the patches from the other object. 
For example, holes or islands may occur if no edges of a patch intersect the other object but if edges from 
the other object intersect it. 

The first step in the construction of polygons formed by the intersection of two objects is the proper 
ordering of patch vertices and intersection points to define the patch regions which make up the final 
object. Each of the original four-sided patches becomes at  least two n-sided polygons, with at least one 
polygon oriented outside the other object and one inside. 

The technique for ordering the points consists of several steps. First, the intersection points on the 
edges of a patch (exterior intersection points) are put into a list ordered by edge number. If more than one 
exterior intersection point lies on an edge, those points are ordered according to increasing distance from 
the first endpoint of the edge. The first point on the list is the first vertex of the new polygon. Depending 
on the orientation of this point, either the edges of the patch or the interior intersection line segments are 
followed until another exterior intersection point is encountered. The recursive procedure winseg orders 
the interior intersection points and creates an intersection curve in the patch. Intersection segments are 
matched according to endpoints, and the procedure stops when an exterior intersection point for the patch 
is located. The process is then repeated until all edges and exterior intersection points have been used. 

19 



If the edges are followed, the endpoints of the edges are added to the vertices of the new polygon. If the 
intersection line segments are followed, the interior intersection points become vertices. 

This process can be illustrated by using the patches in figure 17. If it is assumed that polygons are 
being constructed from Pl l ,  then the ordered list of exterior intersection points for P11 consists of 14 
followed by I I .  The starting vertex for the new polygon is 14, and its orientation is negative, or coming 
out (see procedure edge-test). If the polygon that is outside the other object is to  be found, the edges 
of the original P I 1  are followed, adding each vertex to the new polygon, until the next intersection point, 
11, is encountered. Since the orientation of 11 is positive, or going in, its partner, 12,  is designated as 
the next vertex. Since 12 is not an exterior intersection point, the list of interior points is searched until 
a matkh is foiind, in this case 1 3 .  The partner of 13 is an exterior point, 14,  so the process terminates 
with a complete five-sided polygon. If the inside polygon is to be reconstructed, the interior intersection 
lines are followed from 14 to 11, and then the edges of the original patch are followed. A special case in 
this met,hod of point ordering involves the formation of islands or holes within a polygon. If only interior 
irit,ersect,ion points exist for a patch, then an island must be within that patch. If the area outside the 
island is to hc saved, point ordering begins with the four patch vertices and ends with the ordering of 
interior int,ersection points in a counterclockwise direction. However, if the island area is to be saved, 
point ordering includes only the interior intersection points, but they are ordered in a clockwise direction. 

The ordering procedure is presented in detail in the following three algorithms: 

Procedure ordrpy (patch 1 ,leaf1 ,orien 1) 
For each edge of patchl, i = 1 to 4 do 

Begin 1 
For each exterior intersection point, of pat,ch 1 

Begin 2 
Does this intersect ion point, co111c from edgei‘? 

<:orit iriur wit,li iirxt int.rrsrction point 

j = , I +  I 
Saw iridcx(j), the poirit>rr to the intcrscction point,, in a list 
Visit,cLlist,(j) = Falsr 

Casr no: 

<:as(% yc5: 

End 2 
End 1 

Total-ext = j 
Is there an odd niirriber of exterior intersection points‘? 

Case yes: 
Hetiirn (error) 

Coritinur 
Case no: 

Order rxtcrior int,ersection points which lie 0 1 1  the same edgr 
S;we a list of t,hr iritcrior intersection segments o f  patch1 
Do any int,crior intcrscction points exist? 

Case no: 
nzero = 0 

nzcro = 4 1  
For each int>rrior intrrscctiori segmrnt 

Ikgiii 3 

Case yes: 

rixrro = Iiir,(m) - -  I 
S;tvv t h c t  poirit,cr information, ridcx( rixcro) 
Visit,cd list,(rixcm)) = Falsr 

1Slld 3 
((:rr;it.c, ~)olygolis d(~pc’nd(’llt, up011 t .hv declarrd orirritation, (orienl) wit,li ordcrrd vrrtices in a list orderp.) 
j j  = 1 

20 



j = l  
Until j > total-ext do 
(Do until each exterior intersection point(E1P) has been visited, i.e., used to form a polygon) 

Begin 4 
Has EIPj been visited? 

Case yes: 

Case no: 
Continue with next point 

If this is the first point of the polygon (Le., j j  = 1), save a pointer (edgebeg) to the edge number of 

Is this point’s orientation the same as orienl? 
this point 

Case no: 
orderpjj = EIPj 
j j  = j j  + 1 
Add EIPj to the list of intersection points visited (Visited-list(j) = True) 

orderpjj = vertex-pt,dge#, where edge# is the edge number EIPj came from 
orderpjj+l = EIPj 
orderpjj+Z = Partner of EIPj 
Visited-list (j) = True 
Is the partner also an external intersection point? 

Case yes: 

Case no: 
Save pointers to EIP, and its partner (m = ndex(j), m2 = ndex(j)+l) 
j j  = j j  + 2 
Continue creating the polygon by ordering exterior and interior intersection points (proce- 

Update j to point to the exterior intersection point procedure winseg returned from its 
dure winseg) 

ordering (i.e., for what j does ndex(j) = m?) 
Case yes: 

Update j to point to the partner of EIPj 
(For what j does ndex(j) = m2?) 

Has EIPj been visited? 
Case yes: 

(Have completed an ordered polygon) 
Save this polygon 
Save the planar coefficients of patch1 
Initialize to start a new polygon 
j = l  
Return to “Begin 4” 

Case no: 
Visited-list(j) = True 

Save a pointer (edgelast) to the edge number of this point 
For n = j + 1 to total-ext do 

Has EIP, been visited? 
Case yes: 

Case no: 

Begin 5 

Continue with next point in list 

Are edge, and edgelast the same? 
Case no: 

Continue ordering polygon points by including into orderp the vertex points from 
edgelast+ 1 through edge, - 1 

Case yes: 
Continue 

j = n  

21 



Return to “Begin 4” 
End 5 

Enclose the polygon by including in orderp the vertex points from edgelast + 1 through edgebeg 
Save this polygon 
Save the planar coefficients of patchl 
Initialize to start a new polygon 
Continue with j = 1 

End 4 

Case yes: 
Is total-ext > O? 

Have all intersection points (exterior and interior) been visited? 
Case yes: 

Return 
Case no: 

An island exists within the polygon just ordered, point ordering continues 

An island exists within the original patchl, point ordering begins (procedure island) 
Case no: 

Return 

Procedure winseg (jj ,orderp,leafl,ndex,nzero,visited~list,m,m2) 
1 = leaf1 
For each intersection node leaf involved with patchl 

Begin I 
Case 1: 

Orderpjj = Neither endpoint of the intersection segment in intsnode(. . . ,1, . . .) 
Continue with next intersection node leaf (1 =intsnode(S,l,. . .)) 

orderpjj = First endpoint of the intersection segment in intsnode(. . . , I ,  . . .) and orderpj, = Second 
Case 2: 

cndpoint,, o r  orderp ,j = First endpoint and the second endpoint but the first endpoint is an 
cxtcrior intcrscction point arid the second endpoint is an interior intersection point 

Does orderpjj- 1 = First endpoint? 
Case yes: 

Continue with next interscction node leaf (1 = intsnode(9,1, ...)) (match is with the same segment 
just inputted into orderp) 

Case no: 
j j  = j j  + 1 
orderpjj = First endpoint 
Is this point an exterior intersection point? 

Case yes: 

Case no: 
Return(match made) 

Is the second endpoint an interior intersection point? 
Case no: 

Case yes: 

Call winseg 
Return 

Continue 

Add this interior intersection segment to  the visited list 

Case 3: 
orderpjj = First endpoint, of the intersection segment in intsnodr(. . . , I ,  . . .) and orderpjj = Secorld 

Or orderpj, = First endpoint and the second endpoint and either both mdpoints are exterior intersec- 
cmdpoirit. 

tion poiiits or both are interior intersection points or only the srcoiid erldpoint is an exterior inter- 
section point 

Does orderpjj - 1 = Second endpoint‘! 

22 



Case yes: 
(Match is with the same segment just inputted into orderp) 
Continue with next intersection node leaf 

j j  = j j  + 1 
orderpjj = Second endpoint 
Is this point an exterior intersection point? 

Case no: 

Case yes: 

Case no: 
Return(match made) 

Is the first endpoint an interior intersection point? 
Case no: 

Case yes: 

Call w inseg 
Return 

Continue 

Add this interior intersection segment to the visited list 

End 1 
No match within tolerance for orderpjj due to gapping 
Return (error) 

Procedure island (jj ,orderp,leafl,ndex,nzero,visited~list,m,m2) 
Begin 1 

Is the island a hole cut out of patchl (orienl=l)? 
Case yes: 

(The patch area outside the island is to be saved) 
orderpl = vertex-ptl 
orderpg = vertex-pt2 
orderps = vertex-ptg 
orderp4 = vertex-pt4 
orderpg = vertex-pt1 
orderpg = First interior intersection point 
Add this point to the visited list 
orderpy = Interior intersection point’s partner 
Save the planar coefficients for patchl 
Continue creating the polygon by ordering the island points in counterclockwise direction 

(The island itself is to be saved, orienl = -1) 
orderpl = The first interior intersection point for this specific patch 
Add this point to the visited list 
orderpz = The interior intersection point’s partner 
Save the planar coefficients for patchl 
Continue creating the polygon by ordering the island points in clockwise direction 

Input the last point of the polygon 2 more times 
Return 

Case no: 

End 1 

Because of gaps between patches, caused by nonuniform patch subdivision, a matching intersection 
point cannot always be found when tracing the intersection line segments. Each patch in an object is 
subdivided until it is determined to be either separable or planar. Gaps are the spaces between the edges 
of two adjacent patches of unequal subdivision levels. The left-hand side of figure 19 shows two adjacent 
patches prior to subdivision. If PI is determined to be planar, but P2 is not, then P2 is subdivided. The 
planar representation of Pl has an edge AB,  whereas the planar representation of p-3 has an edge CB 
(see right-hand side of fig. 19). These two edges are from adjacent patches but intersect P3 at two different 
points. The point-ordering algorithm cannot match the points to create a continuous intersection curve. 

23 



Figure 19. Formation of gaps due to unequal subdivision. 

The figure shows a large gap between patches for the purpose of illustration, but in actual practice, the 
gap is small. The smallness of the gap allows the use of the intersection points closest to the unmatched 
point, which forces the match. The polygon construction then continues without failure. 

Transformation From Polygon to Bezier Patch 

Once the polygons in the neighborhood of the intersection are determined, they must be converted back 
to the Bkzier representation to be consistent with the patches that were not involved. A Bkzier patch has 
four vertices, whereas the polygons created after intersection can have any number of vertices. Therefore, 
to transform a polygon into a Bdzier patch, the polygon must first be subdivided into quadrilaterals. In 
figure 20, a six-sided polygon is divided into five quadrilaterals. This division is accomplished using a 
trapezoidal algorithm (ref. 6). The trapezoids are then converted using the four vertices as control points. 
The other 12 points which determine the surface of a BCzier patch are distributed evenly along the edges 
and the interior of the trapezoid. 

The algorithm for creating the trapezoids projects the 3-D polygon onto a 2-D plane and then rotates 
the polygon to avoid having two vertices on the same horizontal line. Two horizontal lines are constructed 
through adjacent vertices. The two points where these lines intersect the edges of the polygon and the 
two vertex points make up the trapezoid. This process is repeated until all the vertices have been used. 
The trapezoidal subdivision is described in algorithmic form as follows: 

Procedure trapezoid 
For each polygon, orderp, created by the intersection algorithm 

Begin 1 
m = O  
nn = Number of vertex points - 1 
Is nn = 3? 

Case yes: 
poly1 = orderpl 
poly2 = orderp4 
poly3 = ordcrpn 
poly4 = ordcrp:j 
Dctermirir the 16 control points which make up a B6zicr patch 
ContiIiuc. with next, polygon 

(Work only with first nn points) 
<:as(. no: 

I 
~ 



\ // 

\ \ 

\ \ 

- - - 7-- - 7 - - -’ 
\ \ 
\ 

d- 

\ \ 
\ 

Be/zier r e p r e s e n t a t i o n  
of one  t r a p e z o i d  

\ 

T r a p e z o i d  s u b d i v i s i o n  

Figure 20. Conversion of n-sided polygon to Bkzier patches. 

Project the polygon onto the plane which produces the largest projected area (vx(i),vy(i) contains the 

Rotate the polygon until no 2 vy coordinates are the same 
Order the coordinates ascending in vy 
(vertexPptl is the bottom segment of the first trapezoid) 

projected 2-D vertex points, and vz(i) contains the unused 3rd coordinates) 

sl(1,l) = vx(1) 
Sl(2,l) = vy(1) 

s1(1,2) = vx(1) 
s1(2,2) = vy(1) 

~1(3 ,1)  = vz(1) 

~1(3 ,2 )  = vz(1) 
(Save the 2 edges which intersect at vertex pointi) 
Is the predecessor of vx( 1) < The successor 

Case yes: 
dl(1,l) = 1 
d1(2,1 = pred(1) (pred(1) = nn) 
d1(1,2) = 1 
d1(2,2) = succ(1) (suCc(1) = 2) 

dl(1,l) = I 
d1(2,1) = succ(1) 
d1(1,2) = 1 
d1(2,2) = pred(1) 

Case no: 

j = 2 (the number of edges a critical line can intersect) 
For i = 2 to nn - 1 do 

Begin 2 
For k = 1 to j do 

Begin 3 
(Determine the intersection points, u(.  . . , k), for y = vy(i) through edge dl(. . ., k)) 

u(2,k) = vy(i) 

25 



26 

Is vertex-pti one of the endpoints of edge dl(. . ., k) (does i = dl(1,k) or d1(2,k))? 
Case yes: 

u(1,k) = vx(i) 
u(3,k) = vx(i) 
vertex(k) = True 

u(1,k) = First coordinate of the intersection point 
u(3,k) = Third coordinate of the intersection point 
vertex(k) = False 

Case no: 

End 3 

Case yes: 
Are there more than 2 intersection points (is j > 2)? 

For k = 1 to j - 1 by 2 do 
Begin 4 

Is vertex(k) = True? 
Case yes: 

Save trapezoid (tl(1,m + I) = slk, tl(2,m + 1) = Slk+l, tl(1,m + 2) = uk, 
tl(2,m + 2) = U k + l )  

m = m + 2  
Case no: 

(The intersection is not a critical segment, ignore it) 
(Save the bottom segment of this trapezoid instead) 

Uk+ 1 = Slk+ 1 

Uk = slk 

End 4 
Case no: 

Save trapezoid 
m = m + 2 

Evaluate case vy(i)  of 
Case I: regular, vy(i)  is not stalagmitic nor stalactitic 

Is vy(pred(i)) > vy(succ(i))? 
Case yes: 

Case no: 
Reset the edge dl = (succ(i), i) to (i,pred(i)) 

Reset the edge dl = (pred(i),i) to (i,succ(i)) 

Case 2: stalactitic, vy (i)  <vy  (pred( i ) ) ,  vy (i) <vy (succ( i))  
Do Slk = Uk for k = 1 to j 

SI = (u1, ..., Uk,vertex-pt;, vertex-pti, uk+ l , .  . .,uj), where u(1,l)  < u(1,k) < vx(i) < 

Shift the edges in dl which are located to the right of vertex-pti 
Save in order the 2 edges which intersect a t  vertex-pti 
Is vx(pred(i)) < vx(succ(i))'? 

u ( l ,k+l )  < u(1, j )  

Case yes: 
d l ( l ,k+l )  = i 
d l ( 2 , k t l )  = pred(i) 
dl(l,k+2) = i 
d1(2,k+2) = succ(i) 

d l ( l ,k+l )  = i 
d1(2,k+l) = sucr(i) 
dl(l,k+2) = i 
d1(2,k+2) = pred(i) 

Case no: 

j = j + 2  

Sl = ( I l k ,  . . . , I lk -  1 , U k + 2 , .  . .,uj), where u(  I , l ) < u (  1 ,k- l )<u(  l,k+2)<u( l j) 
Cas(> 3: stalagrnitic, vy(i) > vy(pred(i)), vy(i) > vy(succ(i)); 



Figure 21. Union of two objects. 

Delete the 2 edges in dl which intersect at vertex-pti 
j = j - 2  

End 2 
(Vertex point,, is the top segment of the last trapezoid) 
Save the trapezoid ( t l ( l ,m+l)  = sll, tl(2,mfl) = sl2, tl(l,m+2) = vertex-pt,,, 

m = m + 2  
For each trapezoid 

Begin 5 

t1(2,m+2) = vertex-pt,,) 

Rotate trapezoid back to original position; 
Determine the 16 control points which make up a Bkzier patch, and project them back onto the 

original polygon 
End 5 

End 1 

Combinatorial Operators 

When all the intersection calculations and patch reconstructions are complete, each of the two original 
objects consists of a mixture of Bkzier patches. Some of the patches are entirely outside the other object, 
and the others are entirely inside. These patches can be combined in a number of ways to form a third 
object. 

The UNION operator creates a third object from the outside surfaces of two intersecting objects. The 
two objects are joined at the intersection curve or curves, and any surface from one object wltich lies inside 
the other object is not considered part of the third object. Figure 21 shows the union of two approximately 
spherical objects. 

27 



Figure 22. Intersection of two objects. 

The INTERSECT operator creates a third object from the inside surfaces of two intersecting objects. 
Any surface from one object which lies outside the other object is not, considered part of the third object. 
Figure 22 shows the intersection of the two previous object,s. 

The CUT operator creates a third object by cutting the surface of object, i with the surface of object j 
at the intersection curve or curves and retaining sections of each object. The orientation value determincs 
the retained sections as follows: 

Orientation = 1; object 3 will be the surfaces of object j which are outside of object i ;  
Orientation = -1; object 3 will be the surfaces of object j which are inside of object i ;  
Orientation = 0; object, 3 will be the surfaces of object j which are outside of object i and the surfaces 

of object i which are inside of object, j. 

Figiirc 23 shows cxaniplcs of using the CUT operator with various combinations of parameters. The 
cut shown in  figiirc: 23(a) cont,ains the portions of object 2 which are outside of object 1. This actually 
leaves a holc in object 2 whcre object, 1 intersected. The cut shown in figure 23(b) consists of the portions 
of object 2 which are inside of object 1. Also, this result is only a piece of the surface of object 2 with a 
hole where otlject 1 intersected. 

Performance Considerations 
The size and execution time of the intersect,ion program depends a great, deal on the application. 

Because each nonseparable leaf node of one object is compared wit,h each nonseparable leaf node of the 
other object, the key parameter for both size and speed is the nurnbtr of leaf nodes generated for the 
objects. The nieniory space required for the program is dominatcd by the arrays that, store leaf-node 
information. Thc two arrays described in the data structure discussion hold 60 values, mostly floating 
point numbers, for each node. Other arrays, which hold tree pointers and planar coefficients, add an 
additional ten values per node. 

For the intersection illustrated in figure 21, 58 leaf nodes were generated for each object. In an actual 
application, a much smoother intersection is required and results in many more nodes. The time required 
to calculate the intersection and t,o construct a resultant object is roughly proportional to the product 
of t,he nurnber of leaf nodes in one object, and the number of leaf nodes in the other object. The time 
can vary widcly, dcpentiing on the number of nodes that are actually involved in thc intersection. AS an 
examplc, thc cast’ shown in figiirc 21 took 15 seconds 011 a Prime 850 minicomputer. Almost all this time 
was spent) calculating t,hc intersection point,s. The subdivision and polygon reconstruction b o k  very little 
t irnc. 

Concluding Remarks 
Calculating the linc of intersection betwoen two three-dimensional objects and using the information 

28 



(a) i = 1, j = 2, Orientation = 1 (b) i = 1, j = 2,  Orientation = - 1 .  

Figure 23. Examples of CUT operator 

to generate a third object is a key element in a geometry development system. This capability allows the 
joining of components, such as aircraft wings and fuselages. Cutouts in surfaces, such as windows, can be 
made. The techniques presented provide the capability to generate complex three-dimensional objects by 
the union or intersection of two surfaces. 

The method of calculating the intersection involves subdividing the original surfaces into planar 
polygons and calculating intersection line segments between them. This method causes the smoothness of 
the surface, achieved by using bicubic patches, to be compromised in the neighborhood of the intersection. 
This faceting of the surface can be reduced by tightening the tolerance on the planarity of the patches at 
the expense of more computer time. 

Further research should be conducted in this area to investigate means of maintaining surface 
smoothness. Another area of research should be the blending of two objects rather than a straight 
intersection. Slope information provided by the patch definition could be used to generate fillets or 
blending patches between objects. 

NASA Langley Research Center 
Hampton, VA 23665 
April 2, 1985 

References 
Wilhite, A. W.; and Rehder, J .  J.: AVID: A Design System for Technology Studies of Advanced Transportation Concepts. 
AIAA Paper 79-0872, May 1979. 
Carlson, Wayne Earl: Techniques for the Generation of Three Dimensional Data for Use in Complex Image Synthesis. 
Ph.D. Diss. (NSF Grant No. MCS 79-23670), Ohio State Univ., Sept. 1982. 
Lane, Jeffrey M.; and Riesenfeld, Richard F.: A Theoretical Development for the Computer Generation and Display of 
Piecewise Polynomial Surfaces. IEEE D-uns. Pattern Anal. B Much. Intell., vol. PAMI-2, no. 1, Jan. 1980, pp. 35-46. 

29 



4 .  
5.  

6. 

Foley, James D.; and Van Dam Andries: Fundamentals of Interactive Computer Graphics. Addison-Wesley Pub. Co., 1982. 
BCzier, P.: Mathematical and Practical Possibilities of UNISURF. Computer Aided Geometric Design, Robert E. Barnhill 
and Richard F. Riesenfeld, eds., Academic Press, Inc., 1974, pp. 127-152. 
Lee, D. T.: Shading of Regions on Vector Display Devises. Comput. Graphics, vol. 15, no. 3, Aug. 1981, pp. 37-44. 

30 

- 



L .  Report No. 12. Government Accession No. 13. Recipient's Catalog No. 
NASA TP-2454 

I. Title and Subtitle 
Intersection of Three-Dimensional Geometric Surfaces 

5. Report Date 

July 1985 

7. Author(s) 
Vicki K. Crisp, John J .  Rehder, and James L. Schwing 

3. Performing Organization Name and Address 
NASA Langley Research Center 
Hampton, VA 23665 

6.  Performing Organization Code 

506-63-23-02 
8. Performing Organization Report 

1 L-15911 

IJnclassified 

10. Work Unit No. 

Unclassified 31 A03 

13. Type of Report and Period COI 

Technical Paper 
12. Sponsoring Agency Name and Address 
National Aeronaiitics and Space Administration 
Washington, DC 20546 

15 Supplementary Notes 
Vicki K. Crisp: Kentron International, Inc., Hampton, Virginia. 
John J .  Rehder: Langley Research Center, Hampton, Virginia. 
James L. Schwing: Old Dominion University, Norfolk, Virginia. 

Calculating the line of intersection between two three-dimensional objects and using the informatic 
generate a third object is a key element in a geometry development system. Techniques are presentec 
the generation of three-dimensional objects, the calculation of a line of intersection between two objects 
the construction of a resultant third object. The objects are closed surfaces consisting of adjacent bic 
parametric patches using Bz ie r  basis functions. The intersection determination involves subdividini 
patches that  make up  the objects until they are approximately planar and then calculating the intersel 
between planes. The resulting straight-line segments are connected to  form the curve of intersec 
The polygons in the neighborhood of the intersection are reconstructed and put back into the B 
representation. A third object can be generated using various combinations of the original two. Se 
examples are presented. Special cases and problems were encountered, and the method for handling 1 

is discussed. The special cases and problems included intersection of patch edges, gaps between adji 
patches because of unequal subdivision, holes, or islands within patches, and  computer round-off err0 

16 Abstract 

17 Key Words (Suggested by Authors(s)) 
Geometry modelling 
Intersection 
Three-dimensional surfaces 
Bhzier surfaces 
Bicubic surfaces 
Coxnputrr graphics 

~ Corriput ~~ c r -a idd  ~ dTs&n - - 

18. Distribution Statement 
Unclassified--Unlimited 

Subject Category 59 

For sale by the National Technical Information Service, Springfield, Virginia 22161 
NASA-Langley .  1985 




